
1

CS 410/510: Advanced
 Programming

Abstract Datatypes + Functions as Data

Mark P Jones

Portland State University

Back to Builders

2

3

Building Builders:
data Builder a = Builder { build::Int -> (a, [NFATrans], Int) }

newState :: Builder NFAState

newState = Builder (\n -> (n, [], n+1))

addTrans :: NFATrans -> Builder ()

addTrans t = Builder (\n -> ((), [t], n))

returnB :: a -> Builder a

returnB x = Builder (\n -> (x, [], n))

bindB :: Builder a -> (a -> Builder b) -> Builder b

bindB b f = Builder (\n -> let (x, ts1, n1) = build b n

 (y, ts2, n2) = build (f x) n1

 in (y, ts1++ts2, n2))

instance Monad Builder where

 return = returnB

 (>>=) = bindB

These are the only
operations that we will
use to build Builders … 4

Example:

Example:

 nfab' (C c) f = do s <- newState

 addTrans (Transition (Char c) s f)

 return s

is syntactic sugar for:

 nfab' (C c) f = newState >>= \s ->

 addTrans (Transition (Char c) s f) >>= _ ->

 return s

which, in turn, is an abbreviation for:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

5

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = addTrans (Transition (Char c) s f) `bindB` h

 h _ = returnB s

6

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = addTrans (t s) `bindB` h

 t s = Transition (Char c) s f

 h _ = returnB s

7

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n

 (y, ts2, n2) = build (h x) n1

 in (y, ts1++ts2, n2))

 t s = Transition (Char c) s f

 h _ = returnB s

8

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n

 (y, ts2, n2) = build (h x) n1

 in (y, ts1++ts2, n2))

 t s = Transition (Char c) s f

 h _ = Builder (\n -> (s, [], n))

9

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n

 (y, ts2, n2) = (s, [], n1)

 in (y, ts1++ts2, n2))

 t s = Transition (Char c) s f

 h _ = Builder (\n -> (s, [], n))

10

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n

 in (s, ts1, n1))

 t s = Transition (Char c) s f

 h _ = Builder (\n -> (s, [], n))

11

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n

 in (s, ts1, n1))

 t s = Transition (Char c) s f

 h _ = Builder (\n -> (s, [], n))

12

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n

 in (s, ts1, n1))

 t s = Transition (Char c) s f

13

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> let (x, ts1, n1) = ((), [t s], n)

 in (s, ts1, n1))

 t s = Transition (Char c) s f

14

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> let (x, ts1, n1) = ((), [t s], n)

 in (s, [t s], n))

 t s = Transition (Char c) s f

15

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = newState `bindB` g

 where

 g s = Builder (\n -> (s, [t s], n))

 t s = Transition (Char c) s f

16

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = build newState n

 (y,ts2,n2) = build (g x) n1

 in (y, ts1++ts2, n2))

 where

 g s = Builder (\n -> (s, [t s], n))

 t s = Transition (Char c) s f

17

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = (n, [], n+1)

 (y,ts2,n2) = build (g x) n1

 in (y, ts1++ts2, n2))

 where

 g s = Builder (\n -> (s, [t s], n))

 t s = Transition (Char c) s f

18

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = (n, [], n+1)

 (y,ts2,n2) = (x, [t x], n1)

 in (y, ts1++ts2, n2))

 where

 g s = Builder (\n -> (s, [t s], n))

 t s = Transition (Char c) s f

19

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = (n, [], n+1)

 (y,ts2,n2) = (x, [t x], n1)

 in (y, ts1++ts2, n2))

 where

 t s = Transition (Char c) s f

20

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = (n, [], n+1)

 (y,ts2,n2) = (n, [t n], n+1)

 in (n, []++ [t n], n+1))

 where

 t s = Transition (Char c) s f

21

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n -> (n, []++ [t n], n+1))

 where

 t s = Transition (Char c) s f

22

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n -> (n, [t n], n+1))

 where

 t s = Transition (Char c) s f

23

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n->(n, [Transition (Char c) n f], n+1))

 where

 t s = Transition (Char c) s f

24

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n->(n, [Transition (Char c) n f], n+1))

25

Under the Hood:

Let’s break this down:

 nfab' (C c) f = newState `bindB` \s ->

 addTrans (Transition (Char c) s f) `bindB` _ ->

 returnB s

becomes:

 nfab' (C c) f = Builder (\n->(n, [Transition (Char c) n f], n+1))

For example:

 build (nfab' (C 'a') 0) 1 = (1, [Transition (Char 'a') 1 0], 2))

26

Back to Building Builders:
data Builder a = Builder { build::Int -> (a, [NFATrans], Int) }

newState :: Builder NFAState

newState = Builder (\n -> (n, [], n+1))

addTrans :: NFATrans -> Builder ()

addTrans t = Builder (\n -> ((), [t], n))

returnB :: a -> Builder a

returnB x = Builder (\n -> (x, [], n))

bindB :: Builder a -> (a -> Builder b) -> Builder b

bindB b f = Builder (\n -> let (x, ts1, n1) = build b n

 (y, ts2, n2) = build (f x) n1

 in (y, ts1++ts2, n2))

instance Monad Builder where

 return = returnB

 (>>=) = bindB

These are the only
operations that we will
use to build Builders …

27

Bad Builders:

We don’t want programmers to start creating arbitrary builders,
because they might accidentally (or intentionally) break the
invariants that we have for our Builder structures:

 bad = Builder (\n -> (n, [epsilon n (n-1)], n-2))

28

Back to Building Builders:
data Builder a = Builder { build::Int -> (a, [NFATrans], Int) }

newState :: Builder NFAState

newState = Builder (\n -> (n, [], n+1))

addTrans :: NFATrans -> Builder ()

addTrans t = Builder (\n -> ((), [t], n))

returnB :: a -> Builder a

returnB x = Builder (\n -> (x, [], n))

bindB :: Builder a -> (a -> Builder b) -> Builder b

bindB b f = Builder (\n -> let (x, ts1, n1) = build b n

 (y, ts2, n2) = build (f x) n1

 in (y, ts1++ts2, n2))

instance Monad Builder where

 return = returnB

 (>>=) = bindB

These are the only
operations that we can

use to build Builders …

29

Using a Haskell Module:
module Builder(Builder, build, newState, addTrans) where

data Builder a

build :: Builder a -> Int -> (a, [NFATrans], Int) }

newState :: Builder NFAState

addTrans :: NFATrans -> Builder ()

instance Monad Builder where

 return = returnB

 (>>=) = bindB

Inside the module: the full
implementation of the Builder
type is visible

Outside the module: only the
names and types of the Builder
type and operations are visible

30

Why we used data …

! " Did you wonder why I’d used:
 data Builder a = Builder (Int -> (a, [NFATrans], Int))

instead of just defining:
 type Builder a = Int -> (a, [NFATrans], Int)

?

! " We could make the original code work just as well if we
eliminated every use of the build function and the Builder
constructor function

! " But using a datatype makes it possible to distinguish
Builder values from other functions that happen to have
the same type … and makes it possible to conceal that
implementation in a module

31

Monads:

! " Monads are abstract types that represent
computations

! " Every monad has at least at return and a
bind (>>=) operation

! " If M is a monad, then a value of type M T
represents:
!" A computation that returns values of type T

!" That uses the special features of monad M

The IO Monad

32

33

The IO Type:

! " The type IO t represents interactive programs
that produce values of type t

! " The main function in every Haskell program is
expected to have type IO ()

! " If you write an expression of type IO t at the
Hugs prompt, it will be evaluated as a program
and the result discarded

! " If you write an expression of some other type at
the Hugs prompt, it will be turned in to an IO
program using:

 print :: (Show a) => a -> IO ()

 print = putStrLn . show

34

I/O Primitives:

! " putChar c is a program that prints the
single character c on the console:

 putChar :: Char -> IO ()

! " (>>) is an infix operator that glues two IO
programs together, returning the result of
the second

 (>>) :: IO a -> IO b -> IO b

! " For example: putChar 'h' >> putChar 'i'

35

putStr and putStrLn:

! " Now, for example, we can define:
putStr :: String -> IO ()

putStr = foldr1 (>>) . map putChar

putStrLn :: String -> IO ()

putStrLn s = putStr s >> putChar "\n"

! " Alternatively
putStr = mapM_ putChar

 using the primitives
mapM :: (a -> IO b) -> [a] -> IO [b]

mapM_ :: (a -> IO b) -> [a] -> IO ()

36

“do-notation”:

! " Syntactic sugar for writing (monadic) IO
programs:

 do p1

 p2

 …

 pn

 is equivalent to:
 p1 >> p2 >> … >> pn

 and can also be written:
 do p1; p2; …; pn or do { p1; p2; …; pn }

37

return:

! "We can make a program that returns x
without doing any I/O using return x:

 return :: a -> IO a

! " Note that return is not quite like the return
we know from imperative languages:

 (do return 1; return 2) = return 2

38

Using Return Values:

! " How can we use returned values?

! " Another important primitive:

 (>>=) :: IO a -> (a -> IO b) -> IO b

! " For example, putChar 'a' is equivalent to:

 return 'a' >>= putChar :: IO ()

! " In fact, return and (>>=) satisfy laws:

 return e >>= f = f e

 p >>= return = p

39

Relating >>= and >>:

! " (>>) can be defined as a special form
of (>>=) that ignores the result of the
first program:

 p >> q = p >>= (\ _ -> q)

! "Special laws:

 (p>>q) >> r = p >> (q >> r)

 (p >>= f) >>= g
 = p >>= (\x -> f x >>= g)

40

Defining mapM and mapM_:

mapM_ :: (a -> IO b) -> [a] -> IO ()

mapM_ f [] = return ()

mapM_ f (x:xs) = f x >>

 mapM_ f xs

mapM :: (a->IO b) -> [a]->IO [b]

mapM f [] = return []

mapM f (x:xs) = f x >>= \y ->

 mapM f xs >>= \ys->

 return (y:ys)

41

Extending “do-notation”:

We can bind the results produced by IO programs to
variables using an extended form of do-notation.
For example:

 do x1 <- p1
 …

 xn <- pn

 q

is equivalent to:
 p1 >>= \x1 ->

 …

 pn >>= \xn ->

 q

last item must be
an expression

all “generators” should have
the same indentation

variables introduced in a
generator are in scope for
the rest of the expression

The “v <-” portion of a
generator is optional and

defaults to “_ <-” if
42

Defining mapM and mapM_:

mapM_ :: (a -> IO b) -> [a] -> IO ()

mapM_ f [] = return ()

mapM_ f (x:xs) = do f x

 mapM_ f xs

mapM :: (a->IO b) -> [a]->IO [b]

mapM f [] = return []

mapM f (x:xs) = do y <- f x

 ys <- mapM f xs

 return (y:ys)

43

getChar:

! "A simple primitive for reading a single
character:

 getChar :: IO Char

! "A simple example:

 echo :: IO a

 echo = do c <- getChar
 putChar c
 echo

44

Reading a Complete Line:

getLine :: IO String

getLine = do c <- getChar

 if c=='\n’

 then return "”

 else do cs <- getLine

 return (c:cs)

45

Alternative:

getLine :: IO String

getLine = loop []

loop :: String -> IO String

loop cs = do c <- getChar

 case c of

 '\n' -> return (reverse cs)

 '\b' -> case cs of

 [] -> loop cs

 (c:cs) -> loop cs

 c -> loop (c:cs) 46

Simple File I/O:

! " Read contents of a text file:

 readFile :: FilePath -> IO String

! "Write a text file:

 writeFile :: FilePath -> String -> IO ()

! " Example: Number lines

 numLines inp out
 = do s <- readFile inp
 writeFile out (unlines (f (lines s)))

 f = zipWith (\n s -> show n ++ s) [1..]

47

Handle-based I/O:

import IO

stdin, stderr, stdout :: Handle

openFile :: FilePath -> IOMode -> IO Handle

hGetChar :: Handle -> IO Char

hPutChar :: Handle -> Char -> IO ()

hClose :: Handle -> IO ()

48

References:

import Data.IORef

data IORef a = …

newIORef :: a -> IO (IORef a)

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

49

IO as an Abstract Type:

! " IO is a primitive type constructor in Haskell
with a large but limited set of operations:

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

putChar :: Char -> IO ()

getChar :: IO Char

…

50

There is No Escape from IO!

! " There are plenty of ways to construct expressions
of type IO t

! " Once a program is “tainted” with IO, there is no
way to “shake it off”

! " There is no primitive of type IO t -> t that runs
a program and returns its result

! " Only two ways to run an IO program:
!" Setting it as your main function in GHC

!" Typing it at the prompt in Hugs/GHCi

Functions as Data

51 52

Functions as Data:

! "Obviously, functions are an important
tool that we use to manipulate data in
functional programs

! "But functions are first-class values in
their own right, so they can also be
used as data …

53

Sets as Functions:

type Set a = a -> Bool

isElem :: a -> Set a -> Bool

x `isElem` s = s x

univ :: Set a

univ = \x -> True

empty :: Set a

empty = \x -> False

singleton :: Eq a => a -> Set a

singleton v = \x -> (x==v)
54

… continued:

(\/) :: Set a -> Set a -> Set a

s \/ t = \x -> s x || t x

(/\) :: Set a -> Set a -> Set a

s /\ t = \x -> s x && t x

! " Stylistic detail: I write op x y = \z -> … to
emphasize that op is a binary operator that
returns a function as its result.

! " Equivalent to: op x y z = …

55

Other Operations?

! "Can I enumerate the elements of a Set?

toList :: Set a -> [a]

! "Can I compare sets for equality?

setEq :: Set a -> Set a -> Bool

! "Can I test for subsets?

subset :: Set a -> Set a -> Bool

56

The Data Alternative:

data Set a = Empty

 | Univ

 | Singleton a

 | Union (Set a) (Set a)

 | Intersect (Set a) (Set a)

Now we can implement empty, univ, singleton,
(\/) and (/\) directly in terms of these
constructors: For example:

empty = Empty

57

Testing for Membership:

isElem :: Eq a => a -> Set a -> Bool

x `isElem` Empty = False

x `isElem` Univ = True

x `isElem` Singleton y = (x==y)

x `isElem` Union l r = x `isElem` l

 || x `isElem` r

x `isElem` Intersect l r = x `isElem` l

 && x `isElem` r

Same code, different distribution …
58

Rows and Columns:
Constructors

O
p

e
ra

ti
o

n
s

59

Rows and Columns:
Constructors

O
p

e
ra

ti
o

n
s

data abstraction (functional)

60

Rows and Columns:
Constructors

O
p

e
ra

ti
o

n
s

p
ro

ce
d
u
re

 a
b
st

ra
ct

io
n

(O
O

P
)

61

… continued:

Representing sets using functions:

! " “Easy” to add new constructors

! " “Hard” to add new operations

Representing sets using trees:

! " “Easy” to add new operations

! " “Hard” to add new constructors

! " Can we make it “easy” in both dimensions?

! " A classic challenge for extensible software

Parser Combinators

62

63

Parsers:

data Parser a

 = Parser { applyP :: String -> [(a, String)]}

applyP :: Parser a -> String -> [(a, String)]

noparse :: Parser a

noparse = Parser (\s -> [])

ok :: a -> Parser a

ok x = Parser (\s -> [(x, s)])

64

Parsers as a Monad:

instance Monad Parser where

 return x = ok x

 p >>= f = Parser (\s ->
 [(y,s2) | (x,s1) <- applyP p s,
 (y,s2) <- applyP (f x) s1])

(***) :: Parser a -> (a -> b) -> Parser b

p *** f = do x <- p

 return (f x)

65

… continued:

item :: Parser Char

item = Parser (\s -> case s of

 [] -> []

 (t:ts) -> [(t,ts)])

sat :: (Char -> Bool) -> Parser Char

sat p = Parser (filter (p . fst) . applyP item)

is :: Char -> Parser Char

is c = sat (c==)

66

Examples:

digit :: Parser Int

digit = sat isDigit >>= \d -> ord d – ord '0'

alpha, lower, upper :: Parser Char

alpha = sat isAlpha

lower = sat isLower

upper = sat isUpper

string :: String -> Parser String

string "" = return ""

string (c:cs) = do char c; string cs; return (c:cs)

67

Alternatives:

infixr 4 |||

(|||) :: Parser a -> Parser a -> Parser a

p ||| q = \s -> p s ++ q s

ex2 :: Parser Char

ex2 = alpha ||| ok '0'

68

Sequences:

infixr 6 >>>

(>>>) :: Parser a -> Parser b -> Parser (a,b)

p >>> q = do x <- p; y <- q; return (x,y)

ex3 :: Parser (Char, Char)

ex3 = sat isDigit >>> sat (not . isDigit)

69

Repetition:

many :: Parser a -> Parser [a]

many p = many1 p ||| return []

many1 :: Parser a -> Parser [a]

many1 p = do x <- p

 xs <- many p

 return (x:xs)

70

“Lexical Analysis”:

number :: Parser Int

number = many1 digit

 *** foldl1 (\a x -> 10*a+x)

71

Context-Free Parsing:

Consider the following grammar:

expr = term “+” expr

 | term “-” expr

 | term

term = atom “*” term

 | atom “/” term

 | atom

atom = “-” atom

 | “(” expr “)”

 | number
72

Context-Free Parsing:

A little refactoring:

expr = term (“+” expr | “-” expr | !)

term = atom (“*” term | atom “/” | !)

atom = “-” atom

 | “(” expr “)”

 | number

73

Context-Free Parsing:

Translation into Haskell:

expr, term, atom :: Parser Int

expr = term >>= \x ->

 (string "+" >> expr >>>= \y -> ok (x+y)) |||

 (string "-" >> expr >>>= \y -> ok (x-y)) |||

 ok x

74

term

 = atom >>= \x ->

 (string "*" >> term >>= \y -> ok (x*y)) |||

 (string "/" >> term >>= \y -> ok (x`div`y)) |||

 ok x

atom

 = (string"-" >> atom) *** negate

 |||

 (string "(" >> expr >>= \n -> string ")" >> ok n)

 |||

 number

… continued:

75

Examples:

Main> expr "1+2*3"

[(7,""),(3,"*3"),(1,"+2*3")]

Main> expr "(1+2)*3"

[(9,""),(3,"*3")]

Main> expr "---------1+2*----3"

[(5,""),(1,"*----3"),

(-1,"+2*----3")]
76

Introducing a Helper:

Parse :: Parser a -> String -> [a]

parse p s = [x | (x,"") <- applyP p s]

Main> parse expr "1+2*3"

[7]

Main> parse expr "(1+2)*3"

[9]

Main> parse expr "---------1+2*----3"

[5]

Main>

77

Declarative Programming:

! " Although it may not be immediately
apparent, the structure of our program
directly mimics the structure of the problem
(i.e., the grammar)

! " In principal, we get to express our parser
at a high-level, and we don’t have to worry
about the details of how it is implemented

! " In practice, we do (left recursion,
exponential behavior, space leaks, etc..)

78

Constructing Abstract Syntax:

! " Suppose that we define a datatype to represent
arithmetic expressions:

data Expr = Add Expr Expr

 | Sub Expr Expr

 | Mul Expr Expr

 | Div Expr Expr

 | Neg Expr

 | Num Int

 deriving Show

! " How can I construct an Expr from an input string?

79

… continued:
absyn :: Parser Char Expr

absyn = expr

 where

 expr = term >>= \x ->

 (string "+" >> expr >>= \y -> ok (Add x y)) |||

 (string "-" >> expr >>= \y -> ok (Sub x y)) |||

 ok x

 term = atom >>= \x ->

 (string "*" >> term >>= \y -> ok (Mul x y)) |||

 (string "/" >> term >>= \y -> ok (Div x y)) |||

 ok x

 atom = (string "-" >> atom *** Neg)

 |||

 (string "(" >> expr >>= \n -> string ")" >> ok n)

 |||

 (number *** Num)

80

Examples:

Main> parse absyn "1+2*3"

[Add (Num 1) (Mul (Num 2) (Num 3))]

Main> parse absyn "------1"

[Neg (Neg (Neg (Neg (Neg (Neg (Num 1))))))]

Main> parse expr "------1"

[1]

Main>

81

Context-Sensitive Parsing:

We can easily go beyond context-free parsing
in this framework:

brack :: Parser String

brack = do c <- char

 xs <- many (sat (c/=))

 sat (c==)

 return xs

82

Summary:

! " Powerful ideas!

! " Abstract types

! " Monads as abstract types for computations

! " Using functions as data

! " Parser combinators

