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Building Builders: 
data Builder a = Builder { build::Int -> (a, [NFATrans], Int) } 

newState :: Builder NFAState 

newState  = Builder (\n -> (n, [], n+1)) 

addTrans :: NFATrans -> Builder () 

addTrans t = Builder (\n -> ((), [t], n)) 

returnB  :: a -> Builder a 

returnB x = Builder (\n -> (x, [], n)) 

bindB    :: Builder a -> (a -> Builder b) -> Builder b 

bindB b f = Builder (\n -> let (x, ts1, n1) = build b n 

                               (y, ts2, n2) = build (f x) n1 

                           in  (y, ts1++ts2, n2)) 

instance Monad Builder where 

  return = returnB 

  (>>=)  = bindB 

These are the only 
operations that we will 
use to build Builders …  4 

Example: 

Example: 

    nfab' (C c) f  = do s <- newState 

                        addTrans (Transition (Char c) s f) 

                        return s 

is syntactic sugar for: 

    nfab' (C c) f  = newState >>= \s -> 

                     addTrans (Transition (Char c) s f) >>= \_ -> 

                     return s 

which, in turn, is an abbreviation for: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = addTrans (Transition (Char c) s f) `bindB` h 

      h _ = returnB s 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = addTrans (t s) `bindB` h 

      t s = Transition (Char c) s f 

      h _ = returnB s 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n 

                               (y, ts2, n2) = build (h x) n1 

                           in  (y, ts1++ts2, n2)) 

      t s = Transition (Char c) s f 

      h _ = returnB s 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n 

                               (y, ts2, n2) = build (h x) n1 

                           in  (y, ts1++ts2, n2)) 

      t s = Transition (Char c) s f 

      h _ = Builder (\n -> (s, [], n)) 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n 

                               (y, ts2, n2) = (s, [], n1) 

                           in  (y, ts1++ts2, n2)) 

      t s = Transition (Char c) s f 

      h _ = Builder (\n -> (s, [], n)) 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n 

                           in  (s, ts1, n1)) 

      t s = Transition (Char c) s f 

      h _ = Builder (\n -> (s, [], n)) 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n 

                           in  (s, ts1, n1)) 

      t s = Transition (Char c) s f 

      h _ = Builder (\n -> (s, [], n)) 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n 

                           in  (s, ts1, n1)) 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> let (x, ts1, n1) = ((), [t s], n) 

                           in  (s, ts1, n1)) 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> let (x, ts1, n1) = ((), [t s], n) 

                           in  (s, [t s], n)) 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = newState `bindB` g 

     where 

      g s = Builder (\n -> (s, [t s], n)) 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n -> let (x,ts1,n1) = build newState n 

                                        (y,ts2,n2) = build (g x) n1 

                                    in (y, ts1++ts2, n2)) 

     where 

      g s = Builder (\n -> (s, [t s], n)) 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n -> let (x,ts1,n1) = (n, [], n+1) 

                                        (y,ts2,n2) = build (g x) n1 

                                    in (y, ts1++ts2, n2)) 

     where 

      g s = Builder (\n -> (s, [t s], n)) 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n -> let (x,ts1,n1) = (n, [], n+1) 

                                        (y,ts2,n2) = (x, [t x], n1) 

                                    in (y, ts1++ts2, n2)) 

     where 

      g s = Builder (\n -> (s, [t s], n)) 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n -> let (x,ts1,n1) = (n, [], n+1) 

                                        (y,ts2,n2) = (x, [t x], n1) 

                                    in (y, ts1++ts2, n2)) 

     where 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n -> let (x,ts1,n1) = (n, [], n+1) 

                                        (y,ts2,n2) = (n, [t n], n+1) 

                                    in (n, []++ [t n], n+1)) 

     where 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n -> (n, []++ [t n], n+1)) 

     where 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n -> (n, [t n], n+1)) 

     where 

      t s = Transition (Char c) s f 

23 

Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n->(n, [Transition (Char c) n f], n+1)) 

     where 

      t s = Transition (Char c) s f 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n->(n, [Transition (Char c) n f], n+1)) 
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Under the Hood: 

Let’s break this down: 

    nfab' (C c) f  = newState `bindB` \s -> 

                     addTrans (Transition (Char c) s f) `bindB` \_ -> 

                     returnB s 

becomes: 

    nfab' (C c) f  = Builder (\n->(n, [Transition (Char c) n f], n+1)) 

For example: 

   build (nfab' (C 'a') 0) 1  = (1, [Transition (Char 'a') 1 0], 2)) 
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Back to Building Builders: 
data Builder a = Builder { build::Int -> (a, [NFATrans], Int) } 

newState :: Builder NFAState 

newState  = Builder (\n -> (n, [], n+1)) 

addTrans :: NFATrans -> Builder () 

addTrans t = Builder (\n -> ((), [t], n)) 

returnB  :: a -> Builder a 

returnB x = Builder (\n -> (x, [], n)) 

bindB    :: Builder a -> (a -> Builder b) -> Builder b 

bindB b f = Builder (\n -> let (x, ts1, n1) = build b n 

                               (y, ts2, n2) = build (f x) n1 

                           in  (y, ts1++ts2, n2)) 

instance Monad Builder where 

  return = returnB 

  (>>=)  = bindB 

These are the only 
operations that we will 
use to build Builders …  
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Bad Builders: 

We don’t want programmers to start creating arbitrary builders, 
because they might accidentally (or intentionally) break the 
invariants that we have for our Builder structures: 

  bad = Builder (\n -> (n, [epsilon n (n-1)], n-2)) 
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Back to Building Builders: 
data Builder a = Builder { build::Int -> (a, [NFATrans], Int) } 

newState :: Builder NFAState 

newState  = Builder (\n -> (n, [], n+1)) 

addTrans :: NFATrans -> Builder () 

addTrans t = Builder (\n -> ((), [t], n)) 

returnB  :: a -> Builder a 

returnB x = Builder (\n -> (x, [], n)) 

bindB    :: Builder a -> (a -> Builder b) -> Builder b 

bindB b f = Builder (\n -> let (x, ts1, n1) = build b n 

                               (y, ts2, n2) = build (f x) n1 

                           in  (y, ts1++ts2, n2)) 

instance Monad Builder where 

  return = returnB 

  (>>=)  = bindB 

These are the only 
operations that we can 

use to build Builders …  
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Using a Haskell Module: 
module Builder(Builder, build, newState, addTrans) where 

data Builder a 

build    :: Builder a -> Int -> (a, [NFATrans], Int) } 

newState :: Builder NFAState 

addTrans :: NFATrans -> Builder () 

instance Monad Builder where 

  return = returnB 

  (>>=)  = bindB 

Inside the module: the full 
implementation of the Builder 
type is visible 

Outside the module: only the 
names and types of the Builder 
type and operations are visible  
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Why we used data … 

! " Did you wonder why I’d used: 
 data Builder a = Builder (Int -> (a, [NFATrans], Int)) 

instead of just defining: 
 type Builder a = Int -> (a, [NFATrans], Int) 

? 

! " We could make the original code work just as well if we 
eliminated every use of the build function and the Builder 
constructor function 

! " But using a datatype makes it possible to distinguish 
Builder values from other functions that happen to have 
the same type … and makes it possible to conceal that 
implementation in a module 



31 

Monads: 

! " Monads are abstract types that represent 
computations 

! " Every monad has at least at return and a 
bind (>>=) operation 

! " If M is a monad, then a value of type M T 
represents: 
!" A computation that returns values of type T 

!" That uses the special features of monad M 

The IO Monad 

32 
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The IO Type: 

! " The type IO t represents interactive programs 
that produce values of type t 

! " The main function in every Haskell program is 
expected to have type IO () 

! " If you write an expression of type IO t at the 
Hugs prompt, it will be evaluated as a program 
and the result discarded 

! " If you write an expression of some other type at 
the Hugs prompt, it will be turned in to an IO 
program using: 

 print :: (Show a) => a -> IO () 

 print = putStrLn . show 

34 

I/O Primitives: 

! " putChar c is a program that prints the 
single character c on the console: 

  putChar :: Char -> IO () 

! " (>>) is an infix operator that glues two IO 
programs together, returning the result of 
the second 

  (>>) :: IO a -> IO b -> IO b 

! " For example: putChar 'h' >> putChar 'i'  
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putStr and putStrLn: 

! " Now, for example, we can define: 
putStr   :: String -> IO () 

putStr   = foldr1 (>>) . map putChar 

putStrLn   :: String -> IO () 

putStrLn s  = putStr s >> putChar "\n" 

! " Alternatively 
putStr   = mapM_ putChar 

 using the primitives 
mapM   :: (a -> IO b) -> [a] -> IO [b] 

mapM_   :: (a -> IO b) -> [a] -> IO () 

36 

“do-notation”: 

! " Syntactic sugar for writing (monadic) IO 
programs: 

 do p1 

   p2 

   … 

   pn 

 is equivalent to: 
 p1 >> p2 >> … >> pn 

 and can also be written: 
 do  p1; p2; …; pn   or  do { p1; p2; …; pn } 
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return: 

! "We can make a program that returns x 
without doing any I/O using return x: 

  return :: a -> IO a 

! " Note that return is not quite like the return 
we know from imperative languages: 

  (do return 1; return 2) = return 2 
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Using Return Values: 

! " How can we use returned values? 

! " Another important primitive: 

  (>>=) :: IO a -> (a -> IO b) -> IO b 

! " For example, putChar 'a' is equivalent to: 

  return 'a' >>= putChar :: IO () 

! " In fact, return and (>>=) satisfy laws: 

  return e >>= f  =  f e 

  p >>= return =  p 
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Relating >>= and >>: 

! " (>>) can be defined as a special form 
of (>>=) that ignores the result of the 
first program: 

  p >> q  = p >>= (\ _ -> q) 

! "Special laws: 

  (p>>q) >> r  =  p >> (q >> r) 

  (p >>= f) >>= g 
  = p >>= (\x -> f x >>= g) 
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Defining mapM and mapM_: 

mapM_   :: (a -> IO b) -> [a] -> IO () 

mapM_ f []  = return () 

mapM_ f (x:xs)  = f x   >> 

         mapM_ f xs 

mapM   :: (a->IO b) -> [a]->IO [b] 

mapM f []   = return [] 

mapM f (x:xs)  = f x      >>= \y -> 

         mapM f xs  >>= \ys-> 

         return (y:ys) 
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Extending “do-notation”: 

We can bind the results produced by IO programs to 
variables using an extended form of do-notation.  
For example: 

 do  x1 <- p1 
     … 

     xn <- pn 

     q 

is equivalent to: 
   p1 >>= \x1 -> 

    … 

    pn >>= \xn -> 

    q 

last item must be 
an expression 

all “generators” should have 
the same indentation 

variables introduced in a 
generator are in scope for 
the rest of the expression 

The “v <-” portion of a 
generator is optional and 

defaults to “_ <-” if  
42 

Defining mapM and mapM_: 

mapM_   :: (a -> IO b) -> [a] -> IO () 

mapM_ f []   = return () 

mapM_ f (x:xs)  = do  f x 

                  mapM_ f xs 

mapM   :: (a->IO b) -> [a]->IO [b] 

mapM f []   = return [] 

mapM f (x:xs)  = do  y  <- f x 

           ys <- mapM f xs 

           return (y:ys) 
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getChar: 

! "A simple primitive for reading a single 
character: 

  getChar :: IO Char 

! "A simple example: 

  echo :: IO a 

  echo = do c <- getChar 
       putChar c 
       echo 
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Reading a Complete Line: 

getLine  :: IO String 

getLine  = do c <- getChar 

     if c=='\n’ 

       then return "” 

       else do cs <- getLine 

           return (c:cs) 

45 

Alternative: 

getLine  :: IO String 

getLine  = loop [] 

loop  :: String -> IO String 

loop cs  =  do c <- getChar 

     case c of 

      '\n' -> return (reverse cs) 

      '\b' -> case cs of 

        []    -> loop cs 

        (c:cs) -> loop cs 

         c    -> loop (c:cs) 46 

Simple File I/O: 

! " Read contents of a text file: 

  readFile :: FilePath -> IO String 

! "Write a text file: 

  writeFile :: FilePath -> String -> IO () 

! " Example: Number lines 

  numLines inp out 
   = do s <- readFile inp 
    writeFile out (unlines (f (lines s))) 

  f = zipWith (\n s -> show n ++ s) [1..] 
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Handle-based I/O: 

import IO 

stdin, stderr, stdout :: Handle 

openFile  :: FilePath -> IOMode -> IO Handle 

hGetChar  :: Handle -> IO Char 

hPutChar  :: Handle -> Char -> IO () 

hClose  :: Handle -> IO () 

48 

References: 

import Data.IORef 

data IORef a = … 

newIORef  :: a -> IO (IORef a) 

readIORef :: IORef a -> IO a 

writeIORef :: IORef a -> a -> IO () 
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IO as an Abstract Type: 

! " IO is a primitive type constructor in Haskell 
with a large but limited set of operations: 

return  :: a -> IO a 

(>>=)  :: IO a -> (a -> IO b) -> IO b 

putChar  :: Char -> IO () 

getChar  :: IO Char 

… 
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There is No Escape from IO! 

! " There are plenty of ways to construct expressions 
of type IO t 

! " Once a program is “tainted” with IO, there is no 
way to “shake it off” 

! " There is no primitive of type  IO t -> t  that runs 
a program and returns its result 

! " Only two ways to run an IO program: 
!" Setting it as your main function in GHC 

!" Typing it at the prompt in Hugs/GHCi 

Functions as Data 
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Functions as Data: 

! "Obviously, functions are an important 
tool that we use to manipulate data in 
functional programs 

! "But functions are first-class values in 
their own right, so they can also be 
used as data … 
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Sets as Functions: 

type Set a  = a -> Bool 

isElem   :: a -> Set a -> Bool 

x `isElem` s  = s x 

univ    :: Set a 

univ    = \x -> True 

empty   :: Set a 

empty   = \x -> False 

singleton   :: Eq a => a -> Set a 

singleton v  = \x -> (x==v) 
54 

… continued: 

(\/)   :: Set a -> Set a -> Set a 

s \/ t  = \x -> s x || t x 

(/\)   :: Set a -> Set a -> Set a 

s /\ t  = \x -> s x && t x 

! " Stylistic detail: I write op x y = \z -> … to 
emphasize that op is a binary operator that 
returns a function as its result. 

! " Equivalent to: op x y z = … 
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Other Operations? 

! "Can I enumerate the elements of a Set? 

toList  :: Set a -> [a] 

! "Can I compare sets for equality? 

setEq :: Set a -> Set a -> Bool 

! "Can I test for subsets? 

subset :: Set a -> Set a -> Bool 

56 

The Data Alternative: 

data Set a = Empty 

    | Univ 

    | Singleton a 

    | Union (Set a) (Set a) 

    | Intersect (Set a) (Set a) 

Now we can implement empty, univ, singleton, 
(\/) and (/\) directly in terms of these 
constructors:  For example: 

empty = Empty 

57 

Testing for Membership: 

isElem :: Eq a => a -> Set a -> Bool 

x `isElem` Empty   = False 

x `isElem` Univ   = True 

x `isElem` Singleton y  = (x==y) 

x `isElem` Union l r   = x `isElem` l 

           || x `isElem` r 

x `isElem` Intersect l r  = x `isElem` l 

                 && x `isElem` r 

Same code, different distribution … 
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Rows and Columns: 
Constructors 
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Rows and Columns: 
Constructors 
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data abstraction (functional) 
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Rows and Columns: 
Constructors 
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… continued: 

Representing sets using functions: 

! " “Easy” to add new constructors 

! " “Hard” to add new operations 

Representing sets using trees: 

! " “Easy” to add new operations 

! " “Hard” to add new constructors 

! " Can we make it “easy” in both dimensions? 

! " A classic challenge for extensible software 

Parser Combinators 
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Parsers: 

data Parser a 

            = Parser { applyP :: String -> [(a, String)]} 

applyP  :: Parser a -> String -> [(a, String)] 

noparse  :: Parser a 

noparse  = Parser (\s -> []) 

ok   :: a -> Parser a 

ok x   = Parser (\s -> [(x, s)]) 

64 

Parsers as a Monad: 

instance Monad Parser where 

  return x = ok x 

  p >>= f = Parser (\s -> 
                 [ (y,s2) | (x,s1) <- applyP p s, 
                               (y,s2) <- applyP (f x) s1 ]) 

(***)   :: Parser a -> (a -> b) -> Parser b 

p *** f = do x <- p 

         return (f x) 

65 

… continued: 

item  :: Parser Char 

item  = Parser (\s -> case s of 

     []      -> [] 

     (t:ts) -> [(t,ts)]) 

sat  :: (Char -> Bool) -> Parser Char 

sat p  = Parser (filter (p . fst) . applyP item) 

is   :: Char -> Parser Char 

is c  = sat (c==) 

66 

Examples: 

digit  :: Parser Int 

digit  = sat isDigit >>= \d -> ord d – ord '0' 

alpha, lower, upper :: Parser Char 

alpha  = sat isAlpha 

lower  = sat isLower 

upper  = sat isUpper 

string         :: String -> Parser String 

string ""      = return "" 

string (c:cs) = do char c; string cs; return (c:cs)  
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Alternatives: 

infixr 4 ||| 

(|||)     :: Parser a -> Parser a -> Parser a 

p ||| q  = \s -> p s ++ q s 

ex2     :: Parser Char 

ex2     = alpha ||| ok '0' 

68 

Sequences: 

infixr 6 >>> 

(>>>)    :: Parser a -> Parser b -> Parser (a,b) 

p >>> q = do x <- p; y <- q; return (x,y) 

ex3 :: Parser (Char, Char) 

ex3 = sat isDigit >>> sat (not . isDigit) 

69 

Repetition: 

many  :: Parser a -> Parser [a] 

many p  = many1 p ||| return [] 

many1  :: Parser a -> Parser [a] 

many1 p  = do x <- p 

                        xs <- many p 

                        return (x:xs) 

70 

“Lexical Analysis”: 

number :: Parser Int 

number = many1 digit 

                 *** foldl1 (\a x -> 10*a+x) 

71 

Context-Free Parsing: 

Consider the following grammar: 

expr  = term “+” expr 

    | term “-” expr 

    | term 

term  = atom “*” term 

    | atom “/” term 

    | atom 

atom  = “-” atom 

    | “(” expr “)” 

    | number 
72 

Context-Free Parsing: 

A little refactoring: 

expr  = term (“+” expr | “-” expr | !) 

term  = atom (“*” term | atom “/” | !) 

atom  = “-” atom 

    | “(” expr “)” 

    | number 
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Context-Free Parsing: 

Translation into Haskell: 

expr, term, atom :: Parser Int 

expr    = term >>= \x -> 

             (string "+" >> expr >>>= \y -> ok (x+y)) ||| 

             (string "-" >> expr >>>= \y -> ok (x-y))   ||| 

             ok x 
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term 

    = atom >>= \x -> 

          (string "*" >> term >>= \y -> ok (x*y))     ||| 

          (string "/" >> term >>= \y -> ok (x`div`y)) ||| 

          ok x 

atom 

    = (string"-" >> atom) *** negate 

          ||| 

        (string "(" >> expr >>= \n -> string ")" >> ok n) 

          ||| 

        number 

… continued: 
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Examples: 

Main> expr "1+2*3" 

[(7,""),(3,"*3"),(1,"+2*3")] 

Main> expr "(1+2)*3" 

[(9,""),(3,"*3")] 

Main> expr "---------1+2*----3" 

[(5,""),(1,"*----3"),

(-1,"+2*----3")] 
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Introducing a Helper: 

Parse  :: Parser a -> String -> [a] 

parse p s  = [ x | (x,"") <- applyP p s ] 

Main> parse expr "1+2*3" 

[7] 

Main> parse expr "(1+2)*3" 

[9] 

Main> parse expr "---------1+2*----3" 

[5] 

Main>  
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Declarative Programming: 

! " Although it may not be immediately 
apparent, the structure of our program 
directly mimics the structure of the problem 
(i.e., the grammar) 

! " In principal, we get to express our parser 
at a high-level, and we don’t have to worry 
about the details of how it is implemented 

! " In practice, we do (left recursion, 
exponential behavior, space leaks, etc..) 
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Constructing Abstract Syntax: 

! " Suppose that we define a datatype to represent 
arithmetic expressions: 

data Expr = Add Expr Expr 

        | Sub Expr Expr 

        | Mul Expr Expr 

        | Div Expr Expr 

        | Neg Expr 

        | Num Int 

    deriving Show 

! " How can I construct an Expr from an input string? 
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… continued: 
absyn :: Parser Char Expr 

absyn  = expr 

 where 

  expr    = term >>= \x -> 

               (string "+" >> expr >>= \y -> ok (Add x y)) ||| 

               (string "-" >> expr >>= \y -> ok (Sub x y)) ||| 

               ok x 

  term    = atom >>= \x -> 

               (string "*" >> term >>= \y -> ok (Mul x y)) ||| 

               (string "/" >> term >>= \y -> ok (Div x y)) ||| 

               ok x 

  atom    =  (string "-" >> atom *** Neg) 

            ||| 

             (string "(" >> expr >>= \n -> string ")" >> ok n) 

            ||| 

             (number *** Num) 
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Examples: 

Main> parse absyn "1+2*3" 

[Add (Num 1) (Mul (Num 2) (Num 3))] 

Main> parse absyn "------1" 

[Neg (Neg (Neg (Neg (Neg (Neg (Num 1))))))] 

Main> parse expr  "------1" 

[1] 

Main>  
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Context-Sensitive Parsing: 

We can easily go beyond context-free parsing 
in this framework: 

brack   :: Parser String 

brack   = do c <- char 

                  xs <- many (sat (c/=)) 

                  sat (c==) 

                  return xs 

82 

Summary: 

! " Powerful ideas! 

! " Abstract types 

! " Monads as abstract types for computations 

! " Using functions as data 

! " Parser combinators 


